Fundamentals of the gravitational wave data analysis V

- Hilbert-Huang Transform -

Ken-ichi Oohara Niigata University

Introduction

The Hilbert-Huang transform (HHT)

- It is novel, adaptive approach to time series analysis proposed by Huang+ (1996)
- It consists of
 - > an empirical mode decomposition (EMD)
 - > the Hilbert spectral analysis (HSA)
- It can be applied to **non-linear** and **non-stationary** time series data
- It has been applied to various fields; biomedical engineering, financial engineering, image processing, seismic studies, ocean engineering
- I will review the method of the HHT and its application to search in GWs.

Contents

- Hilbert Spectral Analysis (HSA)
 - > Complex Signal (Analytic Signal)
 - > Instantaneous Amplitude and Frequency (IA & IF)
 - > Hilbert Transform
 - > Problems in the simple HSA
- Hilbert-Huang Transform
 - Empirical Mode Decomposition (EMD) and Intrinsic Mode Function (IMF)
- Application of HHT to search for GWs
 - > Results of Recent Research of Ours
 - > Future Plans

Time-Frequency Analysis of GWs

- **GWs** we will detect are mostly **non-stationary**.
- Analysis of time-varying powers (or amplitudes) and frequencies in the time domain is important.
- Traditionally for time-frequency analysis of GWs
 - > the short-time Fourier transform (STFT) or
 - > the wavelet analysis
- The resolutions in time and frequency: restricted by "**the uncertainty principle**".
- They require predetermined "window functions".

Demodulation

I will discuss methods of high-resolution time-freq. analysis. A simple method of time-freq. analysis is **demodulation**.

• Divide a signal h(t) into modulator and carrier:

$$h(t) = a(t)c(t) = a(t)\cos\theta(t)$$

- > modulator a(t) : a lower frequency signal
- > **carrier** c(t) or $\cos \theta(t)$: a higher frequency signal.
- *a*(*t*): the time-varying amplitude or **the instantaneous amplitude (IA)**
- θ (*t*): the phase
- the instantaneous frequency (IF) $f(t) = \frac{1}{2\pi} \frac{d\theta(t)}{dt}$

Complex Signals

- The decomposition h(t) = a(t)c(t) is **not unique**.
 - → The problem will be better with a complex signal.
- Assume

h(t) = the real part of a certain complex function F(t)

$$h(t) = \operatorname{Re}(F(t))$$
 or $F(t) = h(t) + iv(t) = a(t)e^{i\theta(t)}$

•
$$a(t) = \sqrt{h(t)^2 + v(t)^2}$$
 : IA
 $\theta(t) = \tan^{-1}\left(\frac{v(t)}{h(t)}\right)$: the phase; $f = \frac{1}{2\pi}\frac{d\theta(t)}{dt}$: IF

• This is valid only if the time scale of varying *a*(*t*) is less than 1/*f*.

Hilbert Spectral Analysis (HSA)

- How to find the complex signal *F*(*t*) or the imaginary part *v*(*t*) from *h*(*t*).
- Hilbert Transform

$$v(t) = \mathcal{H}h(t) \equiv \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{h(t')}{t - t'} dt' = h(t) * \left(\frac{1}{\pi t}\right)$$

- *P* : the Cauchy's principal value
 - * : the convolution
- If h(t) is the real part on the real axis of a holomorphic function F(z)

 $(\exists k>0, \exists M>0, |z|^k |F(z)| < M \text{ for } |z| \rightarrow \infty),$ its imaginary part v(t) is uniquely given by the Hilbert transform of h(t).

How to calculate the Hilbert Transform

• HT: convolution of h(t) and $g(t)=1/\pi t$;

$$\mathcal{H}h(t) = h(t) * \left(\frac{1}{\pi t}\right)$$

• FT of
$$g(t)=1/\pi t$$
: $\hat{g}(\omega) = -i \operatorname{sgn}(\omega) = \begin{cases} -i(\omega > 0) \\ 0 & (\omega > 0) \\ i & (\omega > 0) \end{cases}$

• FT of $\mathcal{H}h(t)$: $\widehat{\mathcal{H}h}(\omega) = \hat{h}(\omega)\hat{g}(\omega)$ where $\hat{h}(\omega)$ is the FT of h(t)

How to calculate the Hilbert Transform

- [inverse FT of $\hat{h}(\omega)\hat{g}(\omega)$] = $\mathcal{H}h(r)$
- $\hat{h}(-\omega) = \hat{h}(\omega)^*$ since h(t) is real

$$\mathcal{H}h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{h}(\omega)\hat{g}(\omega)e^{i\omega t} d\omega$$
$$= \frac{1}{2\pi} \left[\int_{-\infty}^{0} i\hat{h}(\omega)e^{i\omega t} d\omega + \int_{0}^{\infty} (-i)\hat{h}(\omega)e^{i\omega t} d\omega \right]$$
$$= -\frac{i}{2\pi} \int_{0}^{\infty} \left[\hat{h}(\omega)e^{i\omega t} - \hat{h}(-\omega)e^{-i\omega t} \right] d\omega$$
$$= \operatorname{Im} \left[\frac{1}{2\pi} \int_{0}^{\infty} 2\hat{h}(\omega)e^{i\omega t} d\omega \right]$$

How to calculate the Hilbert Transform

$$\mathcal{H}h(t) = \operatorname{Im}\left[\frac{1}{2\pi}\int_{0}^{\infty}2\hat{h}(\omega)e^{i\omega t}\,d\omega\right] = \operatorname{Im}\left[\frac{1}{2\pi}\int_{-\infty}^{\infty}\tilde{h}(\omega)e^{i\omega t}\,d\omega\right]$$

where $\tilde{h}(\omega) = \begin{cases} 2\hat{h}(\omega) & (\omega > 0) \\ 0 & (\omega \le 0) \end{cases}$

$$h(t) = \operatorname{Re}\left[\frac{1}{2\pi}\int_{0}^{\infty}2\hat{h}(\omega)e^{i\omega t}\,d\omega\right] = \operatorname{Re}\left[\frac{1}{2\pi}\int_{-\infty}^{\infty}\tilde{h}(\omega)e^{i\omega t}\,d\omega\right]$$

$$F(t) = h(t) + i\mathcal{H}h(t)$$
$$= \frac{1}{2\pi} \int_0^\infty 2\hat{h}(\omega)e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{h}(\omega)e^{i\omega t} d\omega$$

Examples of HT

$h(t) = \sin t$	$\mathcal{H}h(t) = -\cos t$
$\cos t$	sin <i>t</i>
$\exp(it)$	$-i\exp(it)$
exp(-it)	$i \exp(-it)$
1	t
$t^{2} + 1$	$t^{2} + 1$
<u>sint</u>	$1 - \cos t$
t	t

 $\mathcal{H}\big[\mathcal{H}h(t)\big]\!=\!-h(t)$

Hilbert Transform

• Consider $h(t) = a(t) \cos \omega_0 t$, for example,

where a(t) is slowly varying function of t, the Fourier components of a(t) vanish for $|\omega| > \omega_0$

- Its Hilbert transform: $\mathcal{H}h(t) = v(t) = a(t) \sin \omega_0 t$.
- $F(t) = h(t) + iv(t) = a(t) e^{i\omega_0 t}$
- a(t): the amplitude, $f = \omega_0/2\pi$: the frequency

The Chirp Signals

• The chirp signals from the inspiral phase of CBC:

$$h_{+}(t) = A(\tau) \frac{1 + \cos^{2} \iota}{2} \cos \Phi(\tau)$$
$$h_{\times}(t) = A(\tau) \cos \iota \sin \Phi(\tau)$$

where ι is the inclination of the orbital plane and

$$A(\tau) = \frac{4}{r} \left(\frac{GM_c}{c^2}\right)^{5/3} \left(\frac{\pi f_{gw}}{c}\right)^{2/3}$$

$$f_{gw}(\tau) = \frac{1}{\pi} \left(\frac{5}{256\tau}\right)^{3/8} \left(\frac{GM_c}{c^2}\right)^{-5/8}$$

$$\Phi(\tau) = \int_{\tau}^{\tau_0} 2\pi f_{gw}(\tau) d\tau = \Phi_0 - 2\left(\frac{5GM_c}{c^2}\right)^{-5/8} \tau^{5/8}$$

$$\tau = t_{coal} - t; \quad t_{coal}: \text{ time at coalescence}$$

The Chirp Signals

$$h_{+}(t) = A(\tau) \frac{1 + \cos^2 t}{2} \cos \Phi(\tau)$$
$$h_{\times}(t) = A(\tau) \cos t \sin \Phi(\tau)$$

• Since $A / \dot{A} \sim \tau \gg 2 / f_{GW} = P_b$ (orbital period) in the inspiral phase, when $\tau = t_{coal} - t \gg P_b$, we can consider $A(\tau) \frac{1 + \cos^2 t}{2}$ and $A(\tau) \cos t$ as the amplitude of h_+ and h_x and f_{GW} as the frequency.

The Complex Chirp Signal

- We cannot measure $A(\tau) \frac{1 + \cos^2 \iota}{2}$ or $A(\tau) \cos \iota$ and $\cos \Phi(\tau)$ or $\sin \Phi(\tau)$ separately.
- The output of the detector is

 $h(t) = F_{+}(\hat{\boldsymbol{n}})h_{+}(t) + F_{\times}(\hat{\boldsymbol{n}})h_{\times}(t)$

 $F_{+}(\hat{n})$ and $F_{\times}(\hat{n})$: the detector pattern functions \hat{n} : the direction of propagation of the wave

• Define the complex signal $\tilde{h}(t)$ as

$$\begin{split} \hat{h}(t) &= \left(F_{+}(\hat{n}) - iF_{\times}(\hat{n})\right) \left(h_{+}(t) + ih_{\times}(t)\right) \\ &= \left(F_{+}\frac{1 + \cos^{2} \iota}{2} - iF_{\times}\cos\iota\right) A(\tau) \left(\cos\Phi(\tau) + i\sin\Phi(\tau)\right) \\ &\equiv \left(\hat{F}_{+} - i\hat{F}_{\times}\right) A(\tau) \left(\cos\Phi(\tau) + i\sin\Phi(\tau)\right) \\ &= h(t) + iv(t) \end{split}$$

The Complex Chirp Signal

•
$$\tilde{h}(t) = \left(\hat{F}_{+} - i\hat{F}_{\times}\right)A(\tau)\left(\cos\Phi(\tau) + i\sin\Phi(\tau)\right)$$
$$= \sqrt{\hat{F}_{+}^{2} + \hat{F}_{\times}^{2}}e^{i\phi} \times A(\tau)e^{i\Phi(\tau)}$$
$$= \sqrt{\hat{F}_{+}^{2} + \hat{F}_{\times}^{2}}A(\tau)e^{i(\Phi(\tau)+\phi)} \equiv \hat{A}(t)e^{i\hat{\Phi}(t)}$$

• IF:
$$f_{\rm GW}(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt}$$

• IA:
$$\left| \tilde{h}(t) \right| = \hat{A}(t) = \sqrt{\hat{F}_{+}^{2} + \hat{F}_{\times}^{2}} A(\tau)$$

$$\hat{F}_{+} = F_{+} \frac{1 + \cos^{2} \iota}{2}, \quad \hat{F}_{\times} = F_{\times} \cos \iota$$

The Complex Chirp Signal

• IA:
$$\left| \tilde{h}(t) \right| = \hat{A}(t) = \sqrt{\hat{F}_{+}^{2} + \hat{F}_{\times}^{2}} A(\tau); \quad \hat{F}_{+} = F_{+} \frac{1 + \cos^{2} \iota}{2}, \quad \hat{F}_{\times} = F_{\times} \cos \iota$$

- detected by two or more detectors
- the position of the source is known \Rightarrow F_{+} and F_{\times} are known

$$\begin{aligned} \left| \tilde{h}_{k}(t) \right| &= \sqrt{\hat{F}_{k+}^{2} + \hat{F}_{k\times}^{2}} A(\tau); \ (k = 1, 2, \ldots) \\ \\ \frac{\left| \tilde{h}_{1}(t) \right|}{\left| \tilde{h}_{2}(t + \Delta t) \right|} &= \frac{\sqrt{\hat{F}_{1+}^{2} + \hat{F}_{1\times}^{2}}}{\sqrt{\hat{F}_{2+}^{2} + \hat{F}_{2\times}^{2}}} = \sqrt{\frac{\left| F_{1+}^{2} \left(\frac{1 + \cos^{2} t}{2} \right)^{2} + F_{1\times}^{2} \cos t \right|}{F_{2+}^{2} \left(\frac{1 + \cos^{2} t}{2} \right)^{2} + F_{2\times}^{2} \cos t}} \end{aligned}$$

Time-frequency analysis of chirp signals

• The time-frequency analysis can be made by the Hilbert spectral analysis (HSA) of observed chirp signals *h*(*t*);

 $h(t) = F_+(\hat{\boldsymbol{n}})h_+(t) + F_\times(\hat{\boldsymbol{n}})h_\times(t)$

• The HSA is applied to the GWs from other phases of CBC, merger and ring-down phase, or other sources including continuous and burst sources.

HSA vs FSA

- $h(t) = \cos \omega_1 t + \cos \omega_2 t$
- The Fourier spectral analysis (FSA): superposition (or interference) of two waves of frequencies ω₁ and ω₂.

HSA vs FSA

- $h(t) = \cos \omega_1 t + \cos \omega_2 t$
- The Fourier spectral analysis (FSA): superposition (or interference) of two waves of frequencies ω₁ and ω₂.
- The Hilbert spectral analysis (HSA) : beat

HSA vs FSA

- $h(t) = \cos \omega_1 t + \cos \omega_2 t$
- The Fourier spectral analysis (FSA): superposition (or interference) of two waves of frequencies ω₁ and ω₂.
- The Hilbert spectral analysis (HSA) : beat

$$h(t) = \begin{bmatrix} 2\cos\frac{(\omega_1 - \omega_2)t}{2} \\ \cos\frac{(\omega_1 + \omega_2)t}{2} \end{bmatrix} \cos\frac{(\omega_1 + \omega_2)t}{2}$$

of frequency with a modulated amplitude
$$(\omega_1 + \omega_2)/2$$
$$a(t) = \left| 2\cos\frac{(\omega_1 - \omega_2)t}{2} \right| = \sqrt{2(1 + \cos(\omega_1 - \omega_2))}$$

$$h(t) = a_1 \cos \omega_1 + a_2 \cos \omega_2$$

- $|\omega_1 \omega_2| \ll \omega_1 + \omega_2 \implies$ a beat

$$h(t) = a_1 \cos \omega_1 + a_2 \cos \omega_2$$

- $|\omega_1 \omega_2| \ll \omega_1 + \omega_2 \implies$ a beat
- FSA superposition
 HSA beat (or sometime unphysical as the next discussion)

• Question:

> Is it possible to distinguish a beat or superposition depending on $|\omega_1 - \omega_2|$?

• Answer:

Problems in HSA

- The IF is obtained as long as the integral $\int_{-\infty}^{\infty} \frac{h(t')}{t-t'} dt'$ converges.
- IF: not always physically meaningful
- $h(t) = a \cos \omega t + b$ $F(t) = h(t) + i\mathcal{H}h(t) = ae^{i\omega t} + b$
 - $\mathcal{H}h(t) = a\sin\omega t \qquad \qquad = A(t)e^{i\Phi(t)}$

IA:
$$A(t) = (a^2 + b^2 + 2ab\cos\omega t)^{1/2}$$

IF: $f(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt} = \frac{\omega}{2\pi} \frac{a(a+b\cos\omega t)}{a^2 + b^2 + 2ab\cos\omega t}$

$$h(t) = \cos 2\pi f t + b, \quad f = 5 \,\mathrm{Hz}$$

$$h(t) = \cos 2\pi f t + b, \quad f = 5 \,\mathrm{Hz}$$

 $F(t) = h(t) + i\mathcal{H}h(t) = A(t)e^{i\Phi(t)}$

 $h(t) = \cos 2\pi f t + b$, f = 5 Hz, b = 0

The point of the complex signal moves along the circle at a constant speed in the complex plain.

The phase increases with time at a constant rate and the frequency is constant. The amplitude is constant, too.

$$h(t) = \cos 2\pi f t + b, \quad f = 5 \,\mathrm{Hz}$$

 $F(t) = h(t) + i\mathcal{H}h(t) = A(t)e^{i\Phi(t)}$

 $h(t) = \cos 2\pi f t + b$, f = 5 Hz, b = 0.75

The point moves at a constant speed. The phase increases monotonically But the rate changes with time; the frequency is not constant. The amplitude varies with time, too. It is not the case that the amplitude varies slowly.

$$h(t) = \cos 2\pi f t + b, \quad f = 5 \,\mathrm{Hz}$$

 $F(t) = h(t) + i\mathcal{H}h(t) = A(t)e^{i\Phi(t)}$

 $h(t) = \cos 2\pi f t + b$, f = 5 Hz, b = 1.5

The phase decrease in some region. It causes a negative frequency.

Decomposition of Signals

To overcome this problem and resolve the beat-or-superposition problem,

 we need to decompose signal h(t) into some waves c_k(t) and the non-wave part r(t);

$$h(t) = \sum_{k} c_{k}(t) + r(t) = \sum_{k} a_{k}(t) \cos \Phi_{k}(t) + r(t)$$

$$c_{k}(t): \text{ intrinsic mode functions (IMF)}$$

$$r(t): \text{ the trend (non-wave part)}$$

• $a_k(t)$ and r(t) are slowly varying functions.

Intrinsic Mode Functions (IMFs)

- An IMF must satisfies the following conditions to obtain a meaningful IF:
 - > oscillate around zero;

in the whole data set,
|# of extrema - # of zero| = 0 or 1

> locally symmetric wrt zero;

the mean value of the upper and lower envelopes defined by the local maxima and minima = 0

• Empirical Mode Decomposition (EMD):

a sift procedure for decomposing a signal into IMFs.

Empirical Mode Decomposition (EMD)

- Set $h_1(t) = h(t)$ (the original signal)
- for i = 1 to i_{\max}
 - \succ $h_{i1}(t) = h_i(t)$
 - > for k = 1 to k_{max}
 - 1) Mark the local maxima and minima of $h_{ik}(t)$.
 - 2) Interpolate the maxima and minima by cubic splines \implies the upper $U_{ik}(t)$ and lower $L_{ik}(t)$ envelopes.

3)
$$m_{ik}(t) = (U_{ik}(t) + L_{ik}(t))/2.$$

4)
$$h_{i,k+1}(t) = h_{ik}(t) - m_{ik}(t)$$
.

- > Exit if a certain stoppage criterion is satisfied.
- > IMF *i* is obtained; $c_i(t) = h_{ik}(t)$.
- > Set $h_{i+1}(t) = h_i(t) c_i(t)$.
- Set the final residual $r(t) = h_{i\max+1}(t)$.

• The original signal $h_{11}(t) = h_1(t) = h(t)$

• Mark the maxima.

• Interpolate the maxima by cubic splines to obtain the upper envelope $U_{11}(t)$.

• Repeat the procedure to obtain the lower envelope $L_{11}(t)$.

• Calculate the local mean curve $m_{11}(t) = (U_{11}(t)+L_{11}(t))/2.$

• Subtract the mean $m_{11}(t)$ from the original signal $h_{11}(t)$,

• to obtain the residual $h_{12}(t) = h_{11}(t) - m_{11}(t)$.

- Iterate the procedure on $h_{12}(t)$.
- Mark the maxima and the minima.

- Interpolate the maxima and minima to obtain the upper and lower envelopes, $U_{12}(t)$ and $L_{12}(t)$.
- Calculate the local mean curve $m_{12}(t) = (U_{12}(t) + L_{12}(t))/2.$
- Subtract $m_{12}(t)$ from $h_{12}(t)$.

• to obtain the residual $h_{13}(t) = h_{12}(t) - m_{12}(t)$.

• Iterate the procedure on $h_{1k}(t)$,

• until the stoppage criterion is satisfied; $|m_{1k}(t)|$ is sufficiently small and/or the numbers of zero crossing and extrema of the residual $h_{1,k+1}(t)$ are equal or differ at most one.

• Adopt $h_{1,k+1}(t)$ as IMF1, $c_1(t)$, if the stoppage criterion is satisfied.

• Subtract IMF1 $c_1(t)$ from the original signal $h_1(t)$,

- to obtain the residual $h_2(t) = h_1(t) c_1(t)$.
- Apply the sifting process on $h_2(t)$ again to obtain IMF2.

- Calculate the upper $U_{21}(t)$ and lower $L_{21}(t)$ envelops and the mean curve $m_{21}(t)$.
- Subtract $m_{21}(t)$ from $h_{21}(t)$,

• to obtain $h_{22}(t)$.

• Iterate the procedure until the stoppage criterion is satisfied,

• and IMF2 is obtained.

• The sifting process is applies repeatedly to obtain IMF3, IMF4, etc.

• The sifting is completed when residual *r*(t) is smaller than the predetermined value,

or when r(t) has at most one extremum.

Finally, the original signal is decomposed in terms of IMFs.

$$h(t) = \sum_{i=1}^{n} c_i(t) + r(t)$$

Empirical Mode Decomposition (EMD)

• The EMD serves two purposes.

- > To decompose the signal into some waves of considerably different frequencies.
- > To eliminate the background trend on which the IMF is riding.
- > To make the wave profiles more symmetric.

Intrinsic Mode Functions (IMFs)

- the first IMF: the finest-scale or the shortest-period oscillation
 the next IMF: the next shortest-period one.
- The EMD is a series of high-pass filters.
- the residual *r*(*t*):
 - > an oscillation of very long period or a signal varying monotonically
 - > the adaptive local median or trend.

Stoppage Criteria of the EMD

Several different types of stoppage criteria

• **the Cauchy type of convergence test** (Huang et al 1998); the iteration is completed if m_{ik}(t) is small enough,

$$\sum_{j=1}^{N} |m_{ik}(t_{j})^{2}| < \varepsilon \sum_{j=1}^{N} |h_{ik}(t_{j})^{2}|,$$

with a predetermined value of ε .

> mathematically rigorous

> not easy to predetermine the value of ε .

Stoppage Criteria of the EMD

Another type of criterion proposed by Huang+ (1999, 2003)

• the S stoppage;

The EMD stops only after the numbers of zero crossing and extrema are:

- > Equal or differ at most by one.
- > Stay the same for *S* consecutive times.
- the optimal range for *S* : between 3 and 8 (Huang et al 2003)
- Any selection is ad hoc, and the optimal values of ε and S are likely to depend on the signal.

Hilbert-Huang Transform

Hilbert-Huang Transform (HHT) HSA of IMF → time-frequency analysis of signals

• The EMD: an adaptive decomposition

- > not require an *a priori* functional basis
- > the basis functions: adaptively derived from the data by the EMD sift procedure, instead
- The HHT can be applied to **nonlinear and non-stationary data**.

Application of HHT to search for GWs

- output of GW detectors: signal s(t) + noise n(t)h(t) = s(t) + n(t)
- noise: spreading across broad band in the frequency domain
- EMD \implies decomposing the output into the signal and the noise

Problems with EMD

- the original EMD: sensitive to noise
 - In the original form of the EMD, mode mixing frequently appears.

• mode mixing

- > A single IMF consists of signals of widely disparate scale.
- Signals of a similar scale reside in different IMF components.
- serious aliasing in the time-frequency distribution
- not physical meaningful IMF

Mode Mixing

• Mode mixing often occurs if envelopes are close together and at height away from zero.

Ensemble EMD

• Solution: Ensemble EMD (EEMD)

- > Proposed by Huang et al. (2009)
- Inspired by the study of white noise using EMD

• Algorithm:

- 1) Add white noise to the original data to form a "trial", $h_i(t) = h(t) + n_i(t)$.
- 2) Perform EMD on each $h_i(t)$ with different $n_i(t)$.
- 3) For each IMF, take ensemble mean among the trials (i = 1, 2, ...) as the final answer.

- EEMD is a noise-assisted data analysis.
- Noises act as the reference scale. They perturb the data in the solution space.
- A noise contaminates the data.
- Noises will be cancelled out ideally by averaging.

Parameters to be Predetermined

- To perform the EMD or the EEMD, we must predetermine
 - > stoppage criterion:
 - the value of ε (the Cauchy type convergence)
 - the number of S (the S stoppage)
 - > the size of the ensemble for EEMD
 - > the magnitude large noise to be added for EEMD

Application of HHT to search for GWs

- In order to demonstrate applicability of the HHT to search for GWs, especially burst waves, and in order to determine optimal parameters of the EMD or the EEMD,
 - we made simulations.
 - (H. Takahashi+, Advances in Adaptive Data Analysis Vol5 (2013), 1350010)

Setup for Simulation

- a sine-Gaussian signals: $s(t) = a_{SG} \exp\left[-\left(t/\tau\right)^2\right] \sin\phi(t)$
 - $a_{\rm SG}$: a constant to be fixed as SNR is specified $\tau = 0.016$ s
 - > SG with constant freq. (SG-CF):

$$\phi(t) = 6\pi \left(\frac{t}{0.01 \text{s}}\right), \quad f_{\text{sg}} = \frac{1}{2\pi} \frac{d\phi}{dt} = 300 \text{Hz}$$

> SG with time-dependent frequency (SG-chirp)

$$\phi(t) = 2\pi \left[3 \left(\frac{t}{0.01 \text{s}} \right) + 0.24 \left(\frac{t}{0.01 \text{s}} \right)^2 \right],$$
$$f_{\text{SG}} = \left[300 + 48 \left(\frac{t}{0.01 \text{s}} \right) \right] \text{Hz}$$

Setup for Simulation

data to analyze: add noise to each signal

h(t) = s(t) + n(t)

- noise n(t): Gaussian noise of $\sigma = 1$
- Signal-Noise Ratio (SNR): $SNR = \frac{\sqrt{\sum_{j} (s(t_j))^2}}{\sqrt{\sum_{j} (s(t_j))^2}}$

> SNR = 10 :
$$a_{\rm SG} = 1.56$$

- > SNR = 20 : $a_{sg} = 3.12$
- how accurately the signal is recovered from the noisy data under the HHT with various parameters

Signal and Noise

Simulation

- We performed the EMD and EEMD procedures for 400 samples of each data set;
 - > injected signal: SG-CF and SG-chirp
 - > SNR = 20 and 10
 - > stoppage criterion:
 - $S = 2, 4, 6; \epsilon = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$
 - > magnitude of the noise added for the EEMD
 - $\sigma_e = 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 10.0, 20.0$
 - > the size of the ensemble for the EEMD
 - confirmed that the results change little with $N_e > 100$
 - N_e = 200;

IMFs: SG-CF, SNR=20

IMFs: SG-CF, SNR=10

IMFs: SG-chirp, SNR=20

IMFs: SG-chirp, SNR=10

Instantaneous Amplitudes (EEMD)

Overlap of IAs of IMF2 \sim 4 for 30 samples with the EEMD

Instantaneous Frequencies (EEMD)

Overlap of IFs of IMF3 for 30 samples with the EEMD

SG-CF

SG-Chirp

Regression for the IF

- To determine the accuracy,
 the linear and quadratic regression are made for the IF f_{IMF}(t) calculated with the HSA of each IMF.
 - > the linear regression:

 $f_{\rm fit}(t) = [a_1 + b_1(t / 0.01s)]$ Hz

> the quadratic regression:

 $f_{\text{fit}}(t) = [a_2 + b_2(t / 0.01s) + c_2(t / 0.01s)^2] \text{Hz}$

the exact values:

a = 300, b = 0, c = 0 for SG-CF a = 300, b = 48, c = 0 for SG-chirp

Regression of IF (SG-CF)

The coefficients of the linear and quadratic regression of IFs for SG-CF. The averages and the standard deviations of 400 samples are shown.

${ m Fitting \ Range: \ -1.5 \leq (t/0.01 { m s}) \leq 1.5; { m XF=0, \ S=4, \ \sigma_{ m e}=2.0 \ ({ m for \ EEMD})}$								
SG-CF: $f_{SG} = 300$ Hz; $a = 300, b = 0, c = 0$								
	a	b	C	ρ	δ	R^2		
SNR=20								
EMD	$300.4\pm~2.2$	$0.2\pm$ 5.3	1	$1.0{\pm}0.8$	$6.4 {\pm} 2.1$	$0.02{\pm}0.03$		
EMD	$299.1 \pm \hspace{0.1 cm} 3.5$	$0.3\pm~7.8$	$3.4{\pm}12.2$	$1.7{\pm}1.3$	$6.4{\pm}2.1$	$0.08{\pm}0.08$		
EEMD	$299.6 \pm \hspace{0.1 cm} 1.3$	$-0.2\pm$ 2.4		$0.6{\pm}0.4$	$2.9{\pm}0.6$	$0.04 {\pm} 0.05$		
EEMD	$299.3 \pm \hspace{0.1 cm} 2.0$	$-0.1\pm~2.4$	0.7 ± 4.0	$0.9{\pm}0.4$	$2.9{\pm}0.6$	$0.11 {\pm} 0.10$		
SNR=10								
EMD	$307.0{\pm}18.4$	$0.6{\pm}25.4$		$6.1 {\pm} 4.2$	$16.8{\pm}6.2$	$0.09 {\pm} 0.12$		
EMD	291.9 ± 23.2	2.3 ± 33.8	31.2 ± 39.7	$9.2{\pm}5.5$	$16.5{\pm}5.9$	$0.27 {\pm} 0.22$		
EEMD	$301.5\pm$ 3.2	$-0.5\pm$ 5.5		$1.5{\pm}0.8$	$5.3{\pm}1.3$	$0.06{\pm}0.06$		
EEMD	$300.0\pm \ 4.5$	$-0.1\pm$ 6.1	$3.6\pm$ 9.3	$2.1{\pm}1.1$	$5.3{\pm}1.3$	$0.14{\pm}0.13$		

The difference between EMD and EEMD is not apparent except for the quadratic regression of low SNR.

Regression of IF (SG-chirp)

The coefficients of the linear and quadratic regression of IFs for SG-chirp. The averages and the standard deviations of 400 samples are shown.

Fitting Range: $-1.5 \leq (t/0.01 \text{s}) \leq 1.5$; XF=0, S = 4, $\sigma_{\text{e}} = 2.0$ (for EEMD)								
SG-chirp: $f_{SG} = (300 + 48(t/0.01s))$ Hz; $a = 300, b = 48, c = 0$								
	a	b	C	ρ	δ	R^2		
SNR=20								
EMD	301.1 ± 4.5	$45.2\pm$ 9.2		$1.4{\pm}1.3$	$7.4{\pm}2.7$	$0.65 {\pm} 0.22$		
EMD	297.4 ± 7.3	$41.6{\pm}17.0$	$9.3{\pm}17.4$	$2.5{\pm}2.2$	$7.4{\pm}2.6$	$0.69{\pm}0.16$		
EEMD	299.1 ± 1.2	$46.7\pm~2.7$		$0.7{\pm}0.4$	$3.2{\pm}0.7$	$0.92{\pm}0.04$		
EEMD	298.7 ± 2.2	$46.9\pm~2.7$	0.9 ± 4.4	$1.1{\pm}0.5$	$3.2{\pm}0.7$	$0.93 {\pm} 0.04$		
SNR=10								
EMD	309.8 ± 23.3	27.9 ± 32.1		$7.4{\pm}5.4$	$17.7{\pm}6.5$	$0.24 {\pm} 0.22$		
EMD	290.9 ± 26.0	$18.9 {\pm} 41.9$	34.9 ± 44.6	$10.8 {\pm} 6.4$	$17.4 {\pm} 6.2$	$0.45 {\pm} 0.20$		
EEMD	301.7 ± 3.5	41.3 ± 7.4		$2.1{\pm}1.4$	$5.9{\pm}1.8$	$0.72{\pm}0.17$		
EEMD	299.7 ± 4.9	$41.2\pm$ 8.2	$4.6{\pm}11.3$	$2.8{\pm}1.7$	$5.9{\pm}1.8$	$0.76 {\pm} 0.14$		

EMD gives worse results for low SNR, but difference between EMD and EEMD looks small for high SNR.

Indices of the Accuracy of Fitting

• the relative error of fitting against the exact freq.:

$$p = 100 \times \frac{\text{WTSS}[f_{\text{fit}}(t) - f_{\text{SG}}(t)]}{\text{WTSS}[f_{\text{SG}}(t)]}$$

the weighted total sum of squre: WTSS $[f(t)] \equiv \sum_{j} A^{2}(t_{j}) f^{2}(t_{j})$ A(t): the IA of the IMF

smaller $\rho \longrightarrow$ better fit to the exact freq.

• the deviation of the IF for each IMF around the exact freq.:

$$\delta = 100 \times \frac{\text{WTSS}[f_{\text{IMF}}(t) - f_{\text{SG}}(t)]}{\text{WTSS}[f_{\text{SG}}(t)]}$$

It indicates how widely f_{IMF} fluctuates around the exact freq. The procedure is considered unstable if δ is large, even if ρ is small.

Indices of the Accuracy of Fitting

• the coefficient of determination:

$$R^{2} = 1 - \frac{\text{WTSS}[f_{\text{fit}}(t) - f_{\text{IMF}}(t)]}{\text{WTSS}[f_{\text{IMF}}(t)]}$$

- > R^2 is a measure of the goodness of fitting, too.
- > $R^2 = 1$ if the regression line perfectly fits the data; $R^2 = 0$ indicates no relationship between f_{IMF} and t.
- ➢ For SG-chirp (time-dependent freq.): $R^2 ≈ 1$ indicates better fit
- For SG-CF (constant freq.):
 R² ≈ 0 indicates better fit

IF obtained with the EMD and EEMD

The IFs with EMD fluctuate more widely than with EEMD. **mode mixing**

Comparison of $\boldsymbol{\sigma}_e$ (SG-CF)

the magnitude σ_e of the noise added for the EEMD

EEMD; XF = 0, S = 4; Fitting Range: $-1.5 \le (t/0.01s) \le 1.5$

SG-CF: $f_{SG} = 300$ Hz; a = 300, b = 0

	$\sigma_{ m e}$	a_1	b_1	ρ	δ	R^2	Û
SNR=20	0.5	$300.7{\pm}1.7$	0.2 ± 4.4	$0.9{\pm}0.6$	$5.4{\pm}1.6$	$0.02{\pm}0.03$	-
	1.0	$299.5{\pm}3.0$	$-0.0\pm~3.7$	$1.1{\pm}0.6$	$4.8 {\pm} 1.6$	$0.03{\pm}0.05$	
	1.5	$299.2{\pm}1.4$	-0.1 ± 2.6	$0.7{\pm}0.4$	$3.1{\pm}0.8$	$0.04 {\pm} 0.06$	
	2.0	$299.6{\pm}1.3$	$-0.2\pm~2.4$	$0.6{\pm}0.4$	$2.9{\pm}0.6$	$0.04 {\pm} 0.05$	
	3.0	$300.1{\pm}1.3$	$-0.3\pm~2.5$	$0.6{\pm}0.3$	$2.8{\pm}0.6$	$0.04 {\pm} 0.05$	
	5.0	$300.9{\pm}1.3$	$-0.4\pm~2.6$	$0.7{\pm}0.4$	$3.1{\pm}0.7$	$0.04 {\pm} 0.05$	
	10.0	$302.6{\pm}1.7$	$0.3\pm~3.3$	$1.1{\pm}0.6$	$4.6{\pm}1.0$	$0.03{\pm}0.04$	
	20.0	$309.6 {\pm} 4.1$	$8.7\pm$ 7.7	$4.0{\pm}2.0$	10.2 ± 2.3	$0.07 {\pm} 0.07$	
SNR=10	0.5	$294.7 {\pm} 8.1$	$-0.4\pm$ 9.1	$3.2{\pm}2.0$	$7.6{\pm}3.0$	$0.06{\pm}0.08$	-
	1.0	$299.1{\pm}3.1$	-0.5 ± 5.3	$1.4{\pm}0.8$	$5.2{\pm}1.2$	$0.06 {\pm} 0.07$	
	1.5	$300.5{\pm}3.1$	-0.5 ± 5.3	$1.4{\pm}0.8$	$5.2{\pm}1.3$	$0.05{\pm}0.06$	
	2.0	$301.5{\pm}3.2$	$-0.5\pm~5.5$	$1.5{\pm}0.8$	$5.3{\pm}1.3$	$0.06 {\pm} 0.06$	
	3.0	$302.8{\pm}3.5$	$-0.1\pm$ 6.1	$1.7{\pm}1.0$	$5.7{\pm}1.6$	$0.06 {\pm} 0.07$	
	5.0	$304.8 {\pm} 4.3$	$1.1\pm$ 8.1	$2.4{\pm}1.5$	$6.7{\pm}2.1$	$0.06{\pm}0.08$	
	10.0	$311.4 {\pm} 6.8$	$7.9{\pm}11.7$	$4.9{\pm}2.6$	11.2 ± 3.0	$0.08 {\pm} 0.09$	

All except with very large σ_{e} are acceptable.

Comparison of $\boldsymbol{\sigma}_{e}$ (SG-chirp)

the standard deviation σ_e of the noise added for the EEMD

EEMD; XF = 0, S = 4; Fitting Range: $-1.5 \le (t/0.01s) \le 1.5$

SG-chirp: $f_{SG} = (300 + 48(t/0.01s))$ Hz; a = 300, b = 48

	$\sigma_{ m e}$	a_1	b_1	ρ	δ	R^2	Û
SNR=20	0.5	301.5 ± 2.8	$44.9\pm~7.0$	$1.2{\pm}1.1$	$6.3 {\pm} 2.3$	$0.67{\pm}0.19$	
	1.0	$300.1 \pm \ 6.2$	$43.5\pm~6.0$	$1.7{\pm}1.0$	$5.9{\pm}1.9$	$0.67{\pm}0.20$	
	1.5	$298.2\pm~1.6$	$46.3 \pm \ 3.0$	$1.0{\pm}0.5$	$3.6{\pm}0.8$	$0.90{\pm}0.06$	
	2.0	$299.1 \pm \ 1.2$	$46.7\pm~2.7$	$0.7{\pm}0.4$	$3.2{\pm}0.7$	$0.92{\pm}0.04$	
	3.0	$299.9\pm~1.2$	$46.6\pm~2.7$	$0.7{\pm}0.4$	$3.0{\pm}0.7$	$0.92 {\pm} 0.04$	
	5.0	$300.9\pm~1.3$	$46.6\pm~2.7$	$0.7{\pm}0.4$	$3.1{\pm}0.7$	$0.92{\pm}0.04$	
	10.0	$302.0\pm~1.7$	$46.7\pm~3.2$	$1.0{\pm}0.6$	$4.0{\pm}0.9$	$0.88{\pm}0.06$	
	20.0	$303.9\pm$ 3.2	46.2 ± 5.0	1.6 ± 1.0	$6.9{\pm}1.4$	$0.73 {\pm} 0.11$	
SNR=10	0.5	$295.3{\pm}19.2$	$31.0{\pm}16.0$	5.5 ± 3.5	$10.6{\pm}4.5$	$0.45{\pm}0.28$	
	1.0	$298.2\pm$ 3.3	$41.3\pm~7.2$	2.1 ± 1.4	$6.1{\pm}1.7$	$0.73{\pm}0.15$	
	1.5	$300.4 \pm \ 3.3$	41.4 ± 7.2	$2.0{\pm}1.4$	$5.9{\pm}1.7$	$0.73{\pm}0.16$	
	2.0	$301.7\pm~3.5$	41.3 ± 7.4	2.1 ± 1.4	$5.9{\pm}1.8$	$0.72 {\pm} 0.17$	
	3.0	$303.2\pm~3.7$	$41.2\pm~7.6$	$2.3{\pm}1.5$	$6.2{\pm}1.9$	$0.72{\pm}0.17$	
	5.0	304.8 ± 4.3	41.5 ± 8.2	$2.5{\pm}1.7$	$6.7{\pm}2.2$	$0.70{\pm}0.18$	
	10.0	$307.8\pm~6.6$	40.3 ± 9.9	$3.3{\pm}2.3$	$8.9{\pm}2.6$	$0.59{\pm}0.20$	

All except with very large as well as small σ_e are acceptable.

Plots of Coefficients for various $\boldsymbol{\sigma}_{e}$

The dependence of the accuracy on σ_e is rather weak. The best value of σ_e depends on SNR; ~ 3.0 for SNR = 20; ~1.5 for SNR = 10

Comparison of stoppage criteria (SG-CF)

$ ext{EEMD}; ext{XF} = 0, S = 4; ext{Fitting Range: } -1.5 \leq (t/0.01 ext{s}) \leq 1.5$							
SG-CF: $f_{SG} = 300$ Hz; $a = 300, b = 0$							
S/arepsilon	a_1	b_1	ρ	δ	R^2	C	
SNR=20 $S = 2$	$298.8 \pm \ 1.5$	$-0.1\pm~2.6$	$0.8{\pm}0.4$	$3.1{\pm}0.8$	$0.04 {\pm} 0.06$	_	
4	$299.6\pm~1.3$	$-0.2\pm~2.4$	$0.6{\pm}0.4$	$2.9{\pm}0.6$	$0.04{\pm}0.05$		
6	$300.0\pm~1.3$	$-0.2\pm$ 2.5	$0.6{\pm}0.3$	$3.0{\pm}0.6$	$0.04 {\pm} 0.05$		
$arepsilon=10^{-1}$	$302.1\pm~1.9$	$-0.0\pm$ 4.0	$1.1{\pm}0.7$	$3.7{\pm}1.2$	$0.04{\pm}0.05$		
10^{-2}	$299.9 \pm \ 4.3$	$-0.1\pm~3.6$	$1.5{\pm}0.7$	$4.7{\pm}1.2$	$0.03 {\pm} 0.04$		
10^{-3}	$299.0 \pm \ 1.4$	-0.1 ± 2.5	$0.7{\pm}0.4$	$2.9{\pm}0.7$	$0.05{\pm}0.06$		
10^{-4}	$300.2\pm~1.2$	$-0.1\pm~2.5$	$0.6{\pm}0.3$	$3.1{\pm}0.7$	$0.03 {\pm} 0.04$		
10^{-5}	$301.3\pm~2.0$	$-0.3\pm~3.1$	$0.9{\pm}0.5$	$4.3{\pm}1.0$	$0.02{\pm}0.03$		
10^{-6}	$299.5\pm~1.3$	$-0.3\pm~2.4$	$0.7{\pm}0.4$	$2.7{\pm}0.7$	$0.05{\pm}0.07$		
SNR=10 $S=2$	$298.5\pm$ 3.2	$-0.8\pm~5.7$	$1.5{\pm}0.9$	5.1 ± 1.3	$0.06 {\pm} 0.07$		
4	$301.5\pm~3.2$	$-0.5\pm~5.5$	$1.5{\pm}0.8$	$5.3{\pm}1.3$	$0.06{\pm}0.06$		
6	$303.4 \pm \ 3.6$	$-0.3\pm~6.4$	$1.9{\pm}1.1$	$5.9{\pm}1.6$	$0.06{\pm}0.06$		
$arepsilon = 10^{-1}$	$311.8 {\pm} 16.7$	$2.2{\pm}16.6$	6.8 ± 3.9	12.1 ± 5.3	$0.10{\pm}0.10$		
10^{-2}	292.2 ± 5.4	$-1.1\pm$ 8.6	$3.3{\pm}1.9$	$6.8{\pm}2.2$	$0.08{\pm}0.10$		
10^{-3}	$299.4\pm~3.1$	$-0.7\pm~5.4$	$1.4{\pm}0.8$	$4.9{\pm}1.2$	$0.06{\pm}0.07$		
10^{-4}	305.2 ± 4.1	$0.4\pm~7.9$	$2.4{\pm}1.4$	$6.6{\pm}2.0$	$0.06{\pm}0.07$		
10^{-5}	$295.1 \pm \ 4.6$	$-0.9\pm~6.0$	$2.3{\pm}1.2$	$5.4{\pm}1.6$	$0.07{\pm}0.09$		
10^{-6}	301.4 ± 2.8	-0.5 ± 5.2	$1.4{\pm}0.8$	$4.7{\pm}1.1$	$0.06{\pm}0.07$		

All except with very small ε are acceptable.

Comparison of stoppage criteria (SG-chirp)

EEMD; XF	$\mathrm{XF}=0,S=4;$ Fitting Range: $-1.5\leq(t/0.01\mathrm{s})\leq1.$			1.5			
SG-chirp: $f_{\rm SG} = (300 + 48(t/0.01 { m s})){ m Hz}; a = 300, b = 48$							
	S/arepsilon	a_1	b_1	ho	δ	R^2	Û
SNR=20 S	= 2	$297.6 \pm \ 1.6$	$46.1 \pm \ 3.1$	$1.1{\pm}0.5$	$3.5{\pm}0.8$	$0.91{\pm}0.05$	_
	4	$299.1 \pm \ 1.2$	$46.7\pm~2.7$	$0.7{\pm}0.4$	$3.2{\pm}0.7$	$0.92{\pm}0.04$	
	6	$299.7 \pm \hspace{0.1 cm} 1.2$	$46.7\pm~2.7$	$0.7{\pm}0.4$	$3.2{\pm}0.7$	$0.91{\pm}0.04$	
arepsilon = 1	10^{-1}	303.1 ± 2.4	44.0 ± 5.5	$1.4{\pm}1.0$	$4.5{\pm}1.9$	$0.80 {\pm} 0.16$	
1	10^{-2}	$300.4\pm$ 8.0	42.2 ± 6.3	$2.2{\pm}1.2$	$5.4{\pm}2.0$	$0.74 {\pm} 0.18$	
1	10^{-3}	$298.0 \pm \ 1.6$	$46.3 \pm \ 2.9$	$1.0{\pm}0.5$	$3.3{\pm}0.8$	$0.92{\pm}0.05$	
1	10^{-4}	$300.1\pm~1.3$	$46.6\pm~2.9$	$0.7 {\pm} 0.4$	$3.3{\pm}0.8$	$0.90{\pm}0.05$	
1	10^{-5}	302.6 ± 3.3	$43.5\pm$ 4.7	$1.4 {\pm} 0.8$	$4.9{\pm}1.6$	$0.74 {\pm} 0.14$	
1	10^{-6}	$298.7 \pm \hspace{0.1 cm} 2.0$	45.4 ± 2.9	$1.0{\pm}0.5$	$3.4{\pm}0.9$	$0.90{\pm}0.07$	
SNR=10 S	= 2	$297.4 \pm \hspace{0.1 cm} 3.5$	$41.2\pm\ 7.2$	$2.2{\pm}1.5$	$5.8{\pm}1.8$	$0.75{\pm}0.15$	
	4	$301.7\pm$ 3.5	41.3 ± 7.4	$2.1{\pm}1.4$	$5.9{\pm}1.8$	$0.72{\pm}0.17$	
	6	$304.3\pm$ 4.2	$40.1\pm$ 8.3	$2.5{\pm}1.7$	$6.6{\pm}2.2$	$0.67{\pm}0.19$	
arepsilon=1	10^{-1}	314.2 ± 22.7	$25.8 {\pm} 18.8$	$8.2 {\pm} 4.6$	$13.4{\pm}5.5$	$0.33 {\pm} 0.26$	
1	10^{-2}	$288.5 {\pm} 10.4$	34.1 ± 12.1	5.1 ± 3.2	8.7 ± 3.7	$0.58{\pm}0.26$	
1	10^{-3}	$298.7\pm$ 3.2	41.6 ± 6.7	$2.0{\pm}1.3$	$5.6{\pm}1.6$	$0.76 {\pm} 0.14$	
1	10^{-4}	306.9 ± 5.9	$37.9{\pm}10.2$	$3.2{\pm}2.2$	$7.4{\pm}2.7$	$0.60 {\pm} 0.22$	
1	10^{-5}	$293.5{\pm}10.7$	$34.7\pm$ 9.9	$4.2 {\pm} 2.5$	$7.6{\pm}3.0$	$0.61{\pm}0.23$	
1	10^{-6}	$301.8\pm$ 3.3	41.3 ± 6.8	$2.0{\pm}1.4$	$5.5{\pm}1.7$	$0.75{\pm}0.15$	

Unstable with large ε .

A rigid criterion is likely to cause the mode mixing.

Conclusion

- The EMD tends to cause stronger mode mixing than the EEMD.
- **Stoppage criterion**: the most important
 - > The strict criterion is generally adequate.
 - It sometimes causes mode mixing.
 - It always requires long CPU time.
 - > the optimal value: $S = 2 \sim 4$ or $\varepsilon = 10^{-4}$
- σ_e: magnitude of the noise to be added for EEMD
 The dependence on the accuracy is rather weak.
 - > **the optimal value:** $\sigma_e = 1.0 \sim 3.0$ (may depend on the amplitude of the signal)

(H. Takahashi+, Advances in Adaptive Data Analysis Vol5 (2013), 1350010)

Application of HHT to search in GWs

Since HHT provides time-frequency analysis of waves

- > with fine resolution
- > without templates,
- it can be applied to

. . .

- constructing a low-latency alert system for multi-messenger observation (M. Kaneyama, KO+ 2013)
- **detailed analysis of detected GWs** from various sources including CBC, bursts of stellar core collapse (M. Kaneyama+ in collaboration with NR group, in preparation)
- examining detector characterization (detchar)