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Introduction �

The Hilbert-Huang transform (HHT) 
l  It is novel, adaptive approach to time series analysis 

proposed by Huang+ (1996) 

l  It consists of 
Ø  an empirical mode decomposition (EMD) 

Ø  the Hilbert spectral analysis (HSA) 
l  It can be applied to non-linear and non-stationary  

time series data 

l  It has been applied to various fields; 
biomedical engineering, financial engineering, 
image processing, seismic studies, ocean engineering 

l  I will review the method of the HHT and its application 
to search in GWs.	
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Time-Frequency Analysis of GWs �

l  GWs we will detect are mostly non-stationary. 

l  Analysis of time-varying powers (or amplitudes)   
and frequencies in the time domain is important. 

l  Traditionally for time-frequency analysis of GWs 

Ø  the short-time Fourier transform (STFT) 
or 

Ø  the wavelet analysis  

l  The resolutions in time and frequency: 
restricted by "the uncertainty principle". 

l  They require predetermined "window functions". 
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Demodulation �

I will discuss methods of high-resolution time-freq. analysis. 

A simple method of time-freq. analysis is demodulation. 

l  Divide a signal h(t) into modulator and carrier: 
 

Ø  modulator a(t)   : a lower frequency signal 
Ø  carrier c(t) or cosθ(t)  : a higher frequency signal. 

l  a(t): the time-varying amplitude 
       or the instantaneous amplitude (IA) 

l θ(t): the phase 

l  the instantaneous frequency (IF) 
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 h(t) = a(t)c(t) = a(t)cosθ(t)

 
f (t) = 1

2π
dθ(t)

dt



Complex Signals �

l  The decomposition h(t) = a(t)c(t) is not unique. 
         The problem will be better with a complex signal. 

l  Assume  
h(t) = the real part of a certain complex function F(t) 
 
 

l   
 
 
 

l  This is valid  
only if the time scale of varying a(t) is less than 1/f. 	
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 h(t) = Re F (t)( )    or   F (t) = h(t)+ i v(t) = a(t)eiθ (t )

 a(t) = h(t)2 + v(t)2  :  IA

 
θ(t) = tan−1 v(t)

h(t)
⎛
⎝⎜

⎞
⎠⎟

 :  the phase;   f = 1
2π

dθ(t)
dt

 :   IF



Hilbert Spectral Analysis (HSA)�

l  How to find the complex signal F(t)  
or the imaginary part v(t) from h(t). 

l  Hilbert Transform 
 
 
 
   P  : the Cauchy's principal value 
    *  : the convolution 

l  If h(t) is the real part on the real axis of a  
holomorphic function F(z)   
(∃k>0, ∃M>0, |z|k|F(z)|< M for |z|→∞),  
its imaginary part v(t) is uniquely given  
by the Hilbert transform of h(t).	


7	


  
v(t) =H h(t) ≡ 1

π
P

h(t ')
t − t '

dt '
−∞

∞

∫ = h(t)* 1
πt

⎛
⎝⎜

⎞
⎠⎟



How to calculate the Hilbert Transform �

l  HT: convolution of h(t) and g(t)=1/πt; 
 
 
 
 

l  FT of g(t)=1/πt : 
 
 
 

l  FT of  
 
where           is the FT of   
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H h(t) = h(t)* 1

πt
⎛
⎝⎜

⎞
⎠⎟

 

ĝ(ω ) = −isgn(ω ) =
−i (ω > 0)
0 (ω > 0)
i (ω > 0)

⎧

⎨
⎪

⎩
⎪

   H h(t): H h(ω ) = ĥ(ω )ĝ(ω )

 ĥ(ω )  h(t)



How to calculate the Hilbert Transform �

l  [ inverse FT of                ] = 

l         
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 ĥ(ω )ĝ(ω )

  

H h(t)= 1
2π

ĥ(ω )ĝ(ω )eiωt dω
−∞

∞

∫
= 1
2π

iĥ(ω )eiωt dω + (−i)ĥ(ω )eiωt dω
0

∞

∫−∞

0

∫⎡⎣⎢
⎤
⎦⎥

= − i
2π

ĥ(ω )eiωt − ĥ(−ω )e−iωt⎡
⎣

⎤
⎦dω

0

∞

∫
= Im 1

2π
2ĥ(ω )eiωt dω

0

∞

∫⎡
⎣⎢

⎤
⎦⎥

  H h(r)

 ĥ(−ω ) = ĥ(ω )*  since h(t) is real



How to calculate the Hilbert Transform �
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H h(t)= Im 1

2π
2ĥ(ω )eiωt dω

0

∞

∫⎡
⎣⎢

⎤
⎦⎥
= Im 1

2π
h(ω )eiωt dω

−∞

∞

∫⎡
⎣⎢

⎤
⎦⎥

  

where  h(ω ) = 2ĥ(ω ) (ω > 0)
0 (ω ≤ 0)

⎧
⎨
⎪

⎩⎪

  
h(t)= Re 1

2π
2ĥ(ω )eiωt dω

0

∞

∫⎡
⎣⎢

⎤
⎦⎥
= Re 1

2π
h(ω )eiωt dω

−∞

∞

∫⎡
⎣⎢

⎤
⎦⎥

   

F (t) = h(t)+ iH h(t)

= 1
2π

2ĥ(ω )eiωt dω
0

∞

∫ = 1
2π

h(ω )eiωt dω
−∞

∞

∫



Examples of HT �
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h(t) = sint H h(t) = −cost
cost sint

exp(it) − iexp(it)
exp(−it) iexp(−it)
1

t 2 +1
t

t 2 +1
sint

t
1− cost

t

  H H h(t)[ ] = −h(t)



Hilbert Transform �

l  Consider h(t) = a(t) cosω0t, for example, 

where a(t) is slowly varying function of t,   
the Fourier components of a(t) vanish for |ω|>ω0 
 

l  Its Hilbert transform: H h(t) = v(t) = a(t) sinω0t . 

l  F(t) = h(t) + i v(t) = a(t) eiω0t  
 

l  a(t) :  the amplitude,     f = ω0/2π:  the frequency	
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The Chirp Signals �

l  The chirp signals from the inspiral phase of CBC:	
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h+ (t) = A(τ )1+ cos
2 ι

2
cosΦ(τ )

h× (t) = A(τ )cosιsinΦ(τ )

 

where ι is the inclination of the orbital plane and

A(τ ) = 4
r

GMc

c2
⎛
⎝⎜

⎞
⎠⎟

5/3 π fgw

c
⎛
⎝⎜

⎞
⎠⎟

2/3

fgw (τ ) = 1
π

5
256τ

⎛
⎝⎜

⎞
⎠⎟

3/8
GMc

c2
⎛
⎝⎜

⎞
⎠⎟
−5/8

Φ(τ ) = 2π fgw (τ )dτ = Φ0 − 2
τ

τ 0∫
5GMc

c2
⎛
⎝⎜

⎞
⎠⎟
−5/8

τ 5/8

τ = tcoal − t; tcoal :  time at coalescence



The Chirp Signals �

l  Since                                  (orbital period) 
in the inspiral phase, when                       , 

we can consider                                         as the  
amplitude of h+ and hx and fGW as the frequency.    
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  τ = tcoal − t  Pb

 
A(τ )1+ cos2 ι

2
  and  A(τ )cosι

  A /
A ~ τ  2 / fGW = Pb

 

h+ (t) = A(τ )1+ cos
2 ι

2
cosΦ(τ )

h× (t) = A(τ )cosιsinΦ(τ )



The Complex Chirp Signal�

l  We cannot measure                                    

  and                           separately.  
l  The output of the detector is 
 

                            : the detector pattern functions 
            : the direction of propagation of the wave 

l  Define the complex signal          as	
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A(τ )1+ cos2 ι

2
  or  A(τ )cosι

cosΦ(τ ) or sinΦ(τ )

 h(t) = F+ (n̂)h+ (t)+ F× (n̂)h× (t)

 F+ (n̂) and F× (n̂)
n̂

  

h(t) = F+ (n̂)− i F× (n̂)( ) h+ (t)+ i h× (t)( )

= F+
1+ cos2 ι

2
− i F× cosι

⎛
⎝⎜

⎞
⎠⎟

A(τ ) cosΦ(τ )+ isinΦ(τ )( )

≡ F̂+ − i F̂×( )A(τ ) cosΦ(τ )+ isinΦ(τ )( )
= h(t)+ i v(t)

  
h(t)



The Complex Chirp Signal�

l   
 
 
 
 
 

l  IF:  

l  IA:   
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h(t) = F̂+ − i F̂×( )A(τ ) cosΦ(τ )+ isinΦ(τ )( )

= F̂+
2 + F̂×

2 eiφ × A(τ )eiΦ(τ )

= F̂+
2 + F̂×

2 A(τ )ei Φ(τ )+φ( ) ≡ Â(t)eiΦ̂(t )

 
fGW(t) =

1
2π

dΦ̂(t)
dt

  
h(t) = Â(t) = F̂+

2 + F̂×
2 A(τ )

 
F̂+ = F+

1+ cos2 ι
2

, F̂× = F× cosι



The Complex Chirp Signal�

l  IA: 
 

l  detected by two or more detectors 
l  the position of the source is known  
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h(t) = Â(t) = F̂+

2 + F̂×
2 A(τ ) ;

 
F̂+ = F+

1+ cos2 ι
2

, F̂× = F× cosι

  

hk (t) = F̂k+
2 + F̂k×

2 A(τ ); (k = 1, 2, …)

h1(t)
h2 (t + Δt)

=
F̂1+

2 + F̂1×
2

F̂2+
2 + F̂2×

2
=

F1+
2 1+ cos2 ι

2
⎛
⎝⎜

⎞
⎠⎟

2

+F1×
2 cosι

F2+
2 1+ cos2 ι

2
⎛
⎝⎜

⎞
⎠⎟

2

+F2×
2 cosι

 ⇒ F+ and F×  are known

observed	


cosι	
 A(τ)	




Time-frequency analysis of chirp signals �

l  The time-frequency analysis can be made  
by the Hilbert spectral analysis (HSA)  
of observed chirp signals h(t); 
 
 

l  The HSA is applied to the GWs from other 
phases of CBC, merger and ring-down phase, 
or other sources including continuous and 
burst sources. 
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 h(t) = F+ (n̂)h+ (t)+ F× (n̂)h× (t)



HSA vs FSA �

l    

l  The Fourier spectral analysis (FSA):  
 superposition (or interference)  
 of two waves of frequencies ω1 and ω2. 
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 h(t) = cosω1t + cosω 2t



HSA vs FSA �

l    

l  The Fourier spectral analysis (FSA):  
 superposition (or interference)  
 of two waves of frequencies ω1 and ω2. 

l  The Hilbert spectral analysis (HSA) :  
 beat 
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 h(t) = cosω1t + cosω 2t



HSA vs FSA �

l    

l  The Fourier spectral analysis (FSA):  
 superposition (or interference)  
 of two waves of frequencies ω1 and ω2. 

l  The Hilbert spectral analysis (HSA) :  
 beat 

 
 
of frequency                  with a modulated amplitude  
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 h(t) = cosω1t + cosω 2t

 
h(t) = 2cos (ω1 −ω 2 )t

2
⎡
⎣⎢

⎤
⎦⎥
cos (ω1 +ω 2 )t

2

(ω1 +ω 2 ) / 2

 
a(t) = 2cos (ω1 −ω 2 )t

2
= 2 1+ cos(ω1 −ω 2 )( )
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Beat�
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l                               a beat                        

l  Otherwise              superposition of two waves 

 h(t) = a1 cosω1 +a2 cosω 2

 ω1 −ω 2 ω1 +ω 2
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 a1 = 1.0, ω1 / 2π = 10Hz, a2 = 0.5, ω1 / 2π = 11Hz

 a1 = 1.0, ω1 / 2π = 3Hz, a2 = 0.5, ω1 / 2π = 10Hz



Beat�
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l                               a beat                        

l  Otherwise              superposition of two waves 

l  FSA       superposition     
HSA       beat (or sometime unphysical as the next discussion) 

l  Question: 
Ø  Is it possible to distinguish a beat or superposition 

depending on              ?  
 

l Answer:  	


 h(t) = a1 cosω1 +a2 cosω 2

 ω1 −ω 2 ω1 +ω 2

ω1 −ω 2



Problems in HSA �

l  The IF is obtained as long as the integral 

                       converges. 

l  IF: not always physically meaningful 

l   	
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h(t ')
t − t '

dt '
−∞

∞

∫

 h(t) = acosωt + b

  H h(t) = asinωt   

F (t) = h(t)+ iH h(t) = aeiωt + b

= A(t)eiΦ(t )

 

IA:  A(t) = a2 + b2 + 2abcosωt( )1/2

IF:   f (t) = 1
2π

dΦ(t)
dt

= ω
2π

a(a + bcosωt)
a2 + b2 + 2abcosωt
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 h(t) = cos2π f t + b, f = 5Hz

b = 1.5 
b = 0.75 
b = 0 



28	


 h(t) = cos2π f t + b, f = 5Hz

phase diagram	


b = 1.5 b = 0 b = 0.75 

  F (t) = h(t)+ iH h(t) = A(t)eiΦ(t )
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 h(t) = cos2π f t + b, f = 5Hz,  b = 0

The point of the complex signal moves along the circle at a constant 
speed in the complex plain.  
The phase increases with time at a constant rate and the frequency 
is constant. The amplitude is constant, too. 

phase diagram	
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 h(t) = cos2π f t + b, f = 5Hz

phase diagram	


b = 1.5 b = 0 b = 0.75 

  F (t) = h(t)+ iH h(t) = A(t)eiΦ(t )
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 h(t) = cos2π f t + b, f = 5Hz,  b = 0.75

The point moves at a constant speed. 
The phase increases monotonically 
But the rate changes with time; the frequency is not constant.  
The amplitude varies with time, too.  
It is not the case that the amplitude varies slowly. 

phase diagram	




32	


 h(t) = cos2π f t + b, f = 5Hz

phase diagram	


b = 1.5 b = 0 b = 0.75 

  F (t) = h(t)+ iH h(t) = A(t)eiΦ(t )
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 h(t) = cos2π f t + b, f = 5Hz,  b = 1.5

The phase decrease in some region.  
It causes a negative frequency.	


phase diagram	




Decomposition of Signals�

To overcome this problem 
and resolve the beat-or-superposition problem, 
l  we need to decompose signal h(t) into 

some waves ck(t) and the non-wave part r(t); 
 
 
    ck(t): intrinsic mode functions (IMF)  
    r(t) : the trend (non-wave part) 
 

l  ak(t) and r(t) are slowly varying functions. 
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h(t) = ck (t)

k
∑ + r(t) = ak (t)cosΦk (t)

k
∑ + r(t)



Intrinsic Mode Functions (IMFs)�

l  An IMF must satisfies the following conditions 
to obtain a meaningful IF: 

Ø  oscillate around zero; 
in the whole data set,  
|# of extrema – # of zero| = 0 or 1 

Ø  locally symmetric wrt zero;  
the mean value of the upper and lower envelopes 
defined by the local maxima and minima = 0 

l  Empirical Mode Decomposition (EMD): 
a sift procedure for decomposing a signal into IMFs. 
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Empirical Mode Decomposition (EMD) �

l  Set h1(t) = h(t) (the original signal) 

l  for i = 1 to imax 

Ø  hi1(t) = hi(t) 
Ø  for k = 1 to kmax 

1)  Mark the local maxima and minima of hik(t). 
2)  Interpolate the maxima and minima by cubic splines 

      the upper Uik(t) and lower Lik(t) envelopes. 

3)   mik(t) = (Uik(t) + Lik(t))/2. 

4)   hi,k+1(t) = hik(t) - mik(t). 
Ø  Exit if a certain stoppage criterion is satisfied. 

Ø  IMF i is obtained; ci(t) = hik(t) . 
Ø  Set hi+1(t) = hi(t) - ci(t). 

l  Set the final residual r(t) = himax+1(t).	
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l  The original signal h11(t) = h1(t) = h(t)	
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IMF1, iteration 0	




l  Mark the maxima.	
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IMF1, iteration 1	




l  Interpolate the maxima by cubic splines 
to obtain the upper envelope U11(t).	
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IMF1, iteration 1	




l  Repeat the procedure  
to obtain the lower envelope L11(t).	


40	


IMF1, iteration 1	




l  Calculate the local mean curve  
m11(t) = (U11(t)+L11(t))/2.	
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IMF1, iteration 1	




l  Subtract the mean m11(t)  
from the original signal h11(t),	
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IMF1, iteration 1	




l  to obtain the residual h12(t) = h11(t) - m11(t).	
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IMF1, iteration 2	




l  Iterate the procedure on h12(t). 
l  Mark the maxima and the minima. 
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IMF1, iteration 2	




l  Interpolate the maxima and minima  
to obtain the upper and lower envelopes, 
U12(t) and L12(t). 

l  Calculate the local mean curve  
m12(t) = (U12(t)+L12(t))/2.	


l  Subtract m12(t) from h12(t).	
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IMF1, iteration 2	




l  to obtain the residual h13(t) = h12(t) – m12(t).	
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IMF1, iteration 3	




l  Iterate the procedure on h1k(t),	
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IMF1, iteration 3	




48	


IMF1, iteration 4	
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IMF1, iteration 4	
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IMF1, iteration 5	
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IMF1, iteration 6	




l  until the stoppage criterion is satisfied; 
|m1k(t)| is sufficiently small and/or  
the numbers of zero crossing and extrema of the 
residual h1,k+1(t) are equal or differ at most one.	
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IMF1, iteration 6	




l  Adopt h1,k+1(t) as IMF1, c1(t),  
if the stoppage criterion is satisfied.	
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IMF1	




l  Subtract IMF1 c1(t) from the original signal h1(t), 	
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IMF2, iteration 0	




l  to obtain the residual h2(t) = h1(t) – c1(t). 
l  Apply the sifting process on h2(t) again to obtain IMF2.	
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IMF2, iteration 1	




l  Calculate the upper U21(t) and lower L21(t) envelops 
and the mean curve m21(t). 

l  Subtract m21(t) from h21(t),	
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IMF2, iteration 1	




l  to obtain h22(t).	
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IMF2, iteration 2	




l  Iterate the procedure until the stoppage criterion is 
satisfied, 
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IMF2, iteration 2	




59	


IMF2, iteration 3	




l  and IMF2 is obtained. 
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IMF2	




l  The sifting process is applies repeatedly to obtain 
IMF3, IMF4, etc. 
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IMF3	


IMF4	




l  The sifting is completed  
when residual r(t) is smaller than the predetermined 
value, 
or when r(t) has at most one extremum.  
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residual	
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Finally, the original 
signal is decomposed 
in terms of IMFs.	


 
h(t) = ci (t)+ r(t)

i=1

n

∑

the original signal h(t)	


IMF1 c1(t)	


IMF2 c2(t)	


IMF3 c3(t)	


IMF4 c4(t)	


residual r(t)	




Empirical Mode Decomposition (EMD) �

l The EMD serves two purposes. 
Ø  To decompose the signal into some waves of 

considerably different frequencies.  
Ø  To eliminate the background trend  

on which the IMF is riding. 

Ø  To make the wave profiles more symmetric. 
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Intrinsic Mode Functions (IMFs)�

v  the first IMF: the finest-scale  
   or the shortest-period oscillation 

v  the next IMF: the next shortest-period one. 
 

l  The EMD is a series of high-pass filters. 
 

l  the residual r(t):  
Ø  an oscillation of very long period  

or a signal varying monotonically 

Ø  the adaptive local median or trend.	
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Stoppage Criteria of the EMD�

Several different types of stoppage criteria 
 

l  the Cauchy type of convergence test (Huang et al 1998); 
the iteration is completed if mik(t) is small enough, 
 
 
 
with a predetermined value of ε. 
 
Ø  mathematically rigorous 

Ø  not easy to predetermine the value of ε.	
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mik (t j )

2 < ε
j=1

N

∑ hik (t j )
2

j=1

N

∑ ,



Stoppage Criteria of the EMD�

Another type of criterion proposed by Huang+ (1999, 2003) 
 

l  the S stoppage; 
The EMD stops only after the numbers of zero crossing 
and extrema are: 
Ø  Equal or differ at most by one. 

Ø  Stay the same for S consecutive times. 

l  the optimal range for S : between 3 and 8 
      (Huang et al 2003) 

 

l  Any selection is ad hoc,  
and the optimal values of ε and S are likely to 
depend on the signal.	
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Hilbert-Huang Transform �

l  Hilbert-Huang Transform (HHT) 
  HSA of IMF       time-frequency analysis of signals 
        

l  The EMD: an adaptive decomposition 
Ø  not require an a priori functional basis 
Ø  the basis functions:  

 adaptively derived from the data  
 by the EMD sift procedure, instead 

 

l  The HHT can be applied to  
nonlinear and non-stationary data.	
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Application of HHT to search for GWs �

l  output of GW detectors: signal s(t) + noise n(t) 
  
 

l  noise: spreading across broad band  
    in the frequency domain 

 

l  EMD  decomposing the output  
     into the signal and the noise 
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 h(t) = s(t)+n(t)



Problems with EMD�

l  the original EMD: sensitive to noise 
Ø  In the original form of the EMD, mode mixing frequently 

appears. 

l  mode mixing 
Ø  A single IMF consists of signals of widely disparate 

scale. 

Ø  Signals of a similar scale reside in different IMF 
components. 
 

➠  serious aliasing in the time-frequency distribution 

➠ not physical meaningful IMF	
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Mode Mixing �
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l  Mode mixing often occurs if envelopes are close 
together and at height away from zero.	




Ensemble EMD�

l  Solution: Ensemble EMD (EEMD) 
Ø  Proposed by Huang et al. (2009) 
Ø  Inspired by the study of white noise using EMD 

l  Algorithm: 
1)  Add white noise to the original data  

to form a "trial",                           . 

2)  Perform EMD on each hi(t) with different ni(t). 
3)  For each IMF, take ensemble mean among  

the trials ( i = 1, 2, … ) as the final answer.	
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 hi (t) = h(t)+ni (t)



EEMD�

l  EEMD is a noise-assisted data analysis. 
 

l  Noises act as the reference scale. 
They perturb the data in the solution space. 
 

l  A noise contaminates the data. 

l  Noises will be cancelled out ideally by averaging.	
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Parameters to be Predetermined �

l  To perform the EMD or the EEMD, 
we must predetermine 

Ø  stoppage criterion: 

•  the value of ε (the Cauchy type convergence) 
•  the number of S  (the S stoppage) 

Ø  the size of the ensemble for EEMD 

Ø  the magnitude large noise to be added for EEMD	
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Application of HHT to search for GWs �

l  In order to demonstrate applicability of the HHT  
 to search for GWs, especially burst waves, 

and  
in order to determine optimal parameters  
       of the EMD or the EEMD, 
 
we made simulations.	
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(H. Takahashi+, Advances in Adaptive Data Analysis Vol5 (2013), 1350010)	




Setup for Simulation �

l  a sine-Gaussian signals: 
 
 
 

Ø  SG with constant freq. (SG-CF): 
 
 
 

Ø  SG with time-dependent frequency (SG-chirp)	
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s(t) = aSG exp − t /τ( )2⎡⎣ ⎤⎦sinφ(t)

 

aSG :  a constant to be fixed as SNR is specified
τ = 0.016s

 
φ(t) = 6π t

0.01s
⎛
⎝⎜

⎞
⎠⎟ , fSG = 1

2π
dφ
dt

= 300Hz

 

φ(t) = 2π 3 t
0.01s

⎛
⎝⎜

⎞
⎠⎟ + 0.24

t
0.01s

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥,

fSG = 300 + 48 t
0.01s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
Hz



Setup for Simulation �

l  data to analyze:  add noise to each signal 
 
 

l  noise n(t):  Gaussian noise of σ=1 
 

l  Signal-Noise Ratio (SNR): 
 
Ø  SNR = 10 : 
Ø  SNR = 20 :   

l  how accurately the signal is recovered from the noisy 
data under the HHT with various parameters	
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 h(t) = s(t)+n(t)

 
SNR =

s(t j )( )2j∑
σ

 aSG = 1.56

 aSG = 3.12



Signal and Noise�
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SG-CF 
Sine-Gaussian with Constant Freq.	


SG-chirp 
with Time-Dependent Freq.	




Simulation�

l  We performed the EMD and EEMD procedures for 
400 samples of each data set; 

Ø  injected signal: SG-CF and SG-chirp 

Ø  SNR = 20 and 10 
Ø  stoppage criterion: 

•  S = 2, 4, 6;  ε= 10-1, 10-2, 10-3, 10-4, 10-5, 10-6 

Ø  magnitude of the noise added for the EEMD 

• σe = 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 10.0, 20.0 
Ø  the size of the ensemble for the EEMD 

• confirmed that the results change little 
with Ne > 100 

• Ne = 200;	
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IMFs: SG-CF,  SNR=20 �
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EMD	
 EEMD	




IMFs: SG-CF,  SNR=10 �
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EMD	
 EEMD	




IMFs: SG-chirp,  SNR=20 �
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EMD	
 EEMD	




IMFs: SG-chirp,  SNR=10 �
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EMD	
 EEMD	




Instantaneous Amplitudes (EEMD)�
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Overlap of IAs of IMF2〜4 for 30 samples with the EEMD	


SG-CF	
 SG-Chirp	




Instantaneous Frequencies (EEMD)�
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Overlap of IFs of IMF3 for 30 samples with the EEMD	


SG-CF	
 SG-Chirp	




Regression for the IF �

l  To determine the accuracy, 
the linear and quadratic regression are made 
for the IF  fIMF(t) calculated with the HSA of each IMF.  

Ø  the linear regression:  

Ø  the quadratic regression: 
 
 

n  the exact values:	
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 ffit (t) = a1 + b1(t / 0.01s)[ ]Hz

 
ffit (t) = a2 + b2 (t / 0.01s)+c2 (t / 0.01s)

2⎡⎣ ⎤⎦Hz

 

a = 300, b = 0, c = 0  for SG-CF
a = 300, b = 48, c = 0  for SG-chirp



Regression of IF (SG-CF) �
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The coefficients of the linear and quadratic regression of IFs for  
SG-CF. The averages and the standard deviations of 400 samples 
are shown.   	


The difference between EMD and EEMD is not apparent  
except for the quadratic regression of low SNR.	




Regression of IF (SG-chirp) �
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The coefficients of the linear and quadratic regression of IFs for  
SG-chirp. The averages and the standard deviations of 400 samples 
are shown.   	


EMD gives worse results for low SNR,  
but difference between EMD and EEMD looks small for high SNR. 	




Indices of the Accuracy of Fitting �

l  the relative error of fitting against the exact freq.: 
 
 
 
 
 
 
  smaller ρ       better fit to the exact freq. 
 

l  the deviation of the IF for each IMF around the exact freq.: 
 
 
 
It indicates how widely fIMF fluctuates around the exact freq. 
The procedure is considered unstable if δ is large, 
even if ρ is small. 
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ρ = 100 ×

WTSS ffit (t)− fSG (t)[ ]
WTSS fSG (t)[ ]

 
the weighted total sum of squre: WTSS f (t)[ ]≡ A2 (t j ) f 2 (t j )

j
∑

 A(t) :  the IA of the IMF

 
δ = 100 ×

WTSS fIMF (t)− fSG (t)[ ]
WTSS fSG (t)[ ]



Indices of the Accuracy of Fitting �

l  the coefficient of determination: 
 
 
 
Ø  R2 is a measure of the goodness of fitting, too. 

Ø  R2 = 1 if the regression line perfectly fits the data; 
R2 = 0 indicates no relationship between fIMF and t. 

Ø  For SG-chirp (time-dependent freq.): 
   R2 ≈ 1 indicates better fit 

Ø  For SG-CF (constant freq.): 
   R2 ≈ 0 indicates better fit	
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R2 = 1−

WTSS ffit (t)− fIMF (t)[ ]
WTSS fIMF (t)[ ]



IF obtained with the EMD and EEMD�
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The IFs with EMD fluctuate more widely than with EEMD. 
          mode mixing	




Comparison of σe (SG-CF) �
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the magnitude σe of the noise added for the EEMD	


All except with very large σe are acceptable.	




Comparison of σe (SG-chirp)�
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the standard deviation σe of the noise added for the EEMD	


All except with very large as well as small σe are acceptable.	




Plots of Coefficients for various σe �
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The dependence of the accuracy on σe is rather weak. 
The best value of σe depends on SNR; 
~ 3.0 for SNR = 20; ~1.5 for SNR = 10	




Comparison of stoppage criteria (SG-CF) �

95	

All except with very small ε are acceptable.	




Comparison of stoppage criteria (SG-chirp) �
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Unstable with large ε. 
A rigid criterion is likely to cause the mode mixing. 	




Conclusion �

l  The EMD tends to cause stronger mode mixing 
than the EEMD. 

l  Stoppage criterion: the most important 

Ø  The strict criterion is generally adequate. 
•  It sometimes causes mode mixing. 

•  It always requires long CPU time. 
Ø  the optimal value: S = 2~4 or ε=10-4 

l σe: magnitude of the noise to be added for EEMD 
Ø  The dependence on the accuracy is rather weak. 

Ø  the optimal value: σe = 1.0~3.0 
(may depend on the amplitude of the signal)	
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(H. Takahashi+, Advances in Adaptive Data Analysis Vol5 (2013), 1350010)	




Application of HHT to search in GWs�

Since HHT provides time-frequency analysis of waves  
Ø  with fine resolution 
Ø  without templates, 

it can be applied to 

l  constructing a low-latency alert system  
for multi-messenger observation 
(M. Kaneyama, KO+ 2013) 

l  detailed analysis of detected GWs from various 
sources including CBC, bursts of stellar core collapse 
(M. Kaneyama+ in collaboration with NR group, in preparation) 

l  examining detector characterization (detchar) 

l  …	
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