

電波天文分野の将来計画

国立天文台 阪本成一、井上 允

電波天文大型計画

ALMA

□ 建設を開始したが、コミュニティーに今後大きなイ ンパクトを持つ計画

VSOP-2

□予算要求のための提案準備

SKA

□ ALMAに次ぐ大型国際計画。日本のコミット?

ALMA

電波天文における発明・発見

- 宇宙電波(1931年)
- 開口合成法(1946年)
- 水素原子21cm線(1951年)
- 銀河シンクロトロン放射(1953年)
- メーザー (1953年)
- 電波銀河(1960年)
- QSO(1963年)
- マイクロ波背景放射(1965年)
- パルサー(1967年)
- 多数の星間分子(1968年)
- 連星系パルサーと重力波(1974年)
- メガメーザーと巨大質量BH(1995年)
- WMAPの宇宙論(2003年)

- ほとんどの偉大な発見は、偶然 幸運に得られた。
- 幸運な発見へと導いた装置は、 その兆候を逃さないだけの十分 な性能を持っていた。

観測感度の向上

分解能と輝度温度

分解能と周波数範囲

電波の放射メカニズム

日本における電波の利用状況

ALMA

- 直径12m&7mのアンテナ
 合計80台からなるミリ波サ
 ブミリ波干渉計。
- 80-950GHzの大気の窓をカ バー。
- 0.01秒角の解像度。
- 日米欧3極の国際協力。
- 2002年建設開始、2012年 本格運用開始予定。
- 総建設費~1000億円。

Atacama Large Millimeter/submillimeter Array

ALMA計画の全般的な状況

- 米欧では建設予算が承認され、日本に先行して建設 に着手(2003年2月に2者協定書に署名完了)
- 米欧の予算総額は752M\$(FY2000US\$にインフレを 考慮。米欧各459億円相当)
- 日本は平成14-15年度で研究開発、平成16年度から 建設予算を獲得(平成16年度は約10億円で、8年計 画で総額約256億円を予定)
- 2004年9月14日に3者協定書への署名を完了 ⇒日本の参加が正式に認められた

日本参加後のALMA

14

ALMA計画の年次計画

日本分担分	米欧分担分		
2004 Q2 日本分担分の建設開始	2003 Q4 チリでの第1期工事着工 2005 Q1 BEを山頂施設に納品 Q2 チリでの第1期工事完了 最初のアンテナ搭載BEを 山禁其地に納品		
2006 Q1 最初の試作FEを山麓施設に納品 Q2 最初のACA 12mアンテナを山麓 施設に納品	Q4 最初の量産アンテナを 山麓基地に納品 最初のFEを山麓施設に納品		
2007 Q1 最初のフレ重産FE (900GHZ帝 以外)を山麓施設に納品 Q3 ACA 12mアンテナを単一鏡モード で使用した初期運用開始 Q4 最初のACA 7mアンテナを山麓 施設に納品	2007 Q3 初期運用開始		
2009 Q3 ACAシステムの初期運用開始 2012 Q1 ACAシステムの本格運用開始	2011 Q4 建設完了 2012 Q1 本格運用開始		

ALMAの装置性能の特徴

- サブミリ波
- 高い感度
 - □ 大集光面積:現在のミリ波干渉計の16倍
 □ 低雑音受信機群:量子限界に迫る
 □ 高い大気透過率:高い標高、乾燥した気候
 ⇒総合的に2桁の感度向上
- 高い撮像能力
 - □ 最高2桁の解像度向上
 - □ 広視野モザイキング可能
 - □ 高いイメージフィデリティ

ALMAで狙う研究テーマ

距離	天体	実際の広がり	見かけの広がり	ALMAによるプロジェクトの例
z~5以上	原始銀河	10 kpc	3"	原初天体の無バイアスサーベイ、銀河誕生の姿を初めて描き出す
z~0.5 - 3	銀河団	1 Mpc	200"	スニヤエフ・ゼルドビッチ効果、宇宙論パラメータの決定
z∼0.1 − 3	赤外超過銀河	10 kpc	6"	大きな赤外光度の原因、銀河合体、AGN形成
z~0.01	進化途上の銀河	10 kpc	50"	銀河の形態(楕円銀河や円盤銀河)はどのようにして作られたか
10 Mpc	AGNトーラス	1 pc	0.02"	トーラスの構造を初めて描き出す
10 Mpc	AGNを取り囲むスター バースト領域	1 kpc	20"	構造・運動・物理状態、AGNとのつながり
100 kpc	大小マゼラン銀河の分子雲	50 pc	100"	金属欠乏星間物質の物理・化学、星団形成のメカニズム
8 kpc	銀河系の中心	5 pc	100"	ブラックホールを取り巻くガスの構造・運動
5 kpc	大質量星形成コアや超コン パクトHII領域	0.05 pc	2"	大質量星はなぜできるか、ラインサーベイ、偏波観測
1 kpc	超新星残骸	0.05 - 0.5 pc	10 - 100"	衝撃波物理・化学の実験場として、ラインサーベイ
1 kpc	晚期型星	0.02 pc	4"	質量放出の歴史、双極性の起源、ラインサーベイ
0.1-1 kpc	星団形成中の分子雲コア	0.01 - 0.1 pc	2 - 100"	星団形成のメカニズム、偏波観測
0.1-1 kpc	双極分子流	0.01 - 0.5 pc	2 - 500"	発生メカニズム、衝撃波、周囲へのインパクト
0.1 kpc	原始星	5000 AU	50"	質量降着、星の質量はなにが決めるか
0.1 kpc	原始惑星系円盤	400 AU	4"	構造・運動・ギャップ、原始巨大惑星、ラインサーベイ
10 pc	主系列星を取り巻くデブリ ディスク	400 AU	40"	惑星を示唆する構造やギャップ
	惑星とその衛星		1 - 40"	大気の構造と運動
	彗星		2 - 100"	コマ中の物質分布、ラインサーベイ、ジェット
	太陽		1800"	活動領域、リムブライトニングによる彩層構造解明

大気の底から

新たな受信機バンドの追加

感度と解像度の比較

Very wide field surveys: role of bolometer cameras^{P-2}

- Bolometers (+ EVLA,
 Spizter): survey large areas
 to sub-mJy sensitivity
- ALMA: detailed SED and CO follow-up
- ALMA: uJy, narrow field surveys

コンパクトな天体に対する感度

22

スナップショットの感度 (0.1秒角、1分積分、5*σ*)

周波数	Tsys	連続波		;
(GHz)	(K)	点源 (mJy)	輝度(K)	点 源(r
100	70	0.21	2.50	31.7
137	84	0.25	1.60	32.5
230	167	0.50	1.16	51.2
350	327	1.03	1.03	85.0
490	1151	3.93	2.00	275
650	1348	5.23	1.52	318
900	1556	7.90	1.20	409

携帯サイト: http://www.nro.nao.ac.jp/alma/

ALMA感度計算ツール (c)ESO
前提とする装置構成 • アンテナ: 12m×64 • 鏡面精度: 20μm • 照射能率: 0.8 • 相関器×位相誤差 の能率: 0.85 • 偏波数: 2
戻る
CASIO
(Bau

視野と解像度

視野の比較

地上サブミリ波観測の特徴

- ■惑星やダストからの熱放射の検出(連続波)
- 気相分子・分子イオンの定量(輝線・吸収線)
- 高い分光性能(λ/Δλ=10⁷)
- 10-100ms⁻¹程度のガスの運動の検出
- ■定常観測・モニタ・多数の天体の調査
- ■日中の観測が可能

VSOP-2

- 世界初のスペースVLBIミッションVSOPの次期計画
- 高周波(8, 22, 43 GHz)、
 高分解能(~38 µ as)、高
 感度を目指す
- AGNのSMBH、降着円盤、 ジェット生成や、原始星円 盤の磁気圏の解明
- 緊密な国際協力

VLBI Space Orbservatory Programme

Disk around AGN

Accretion Disk in NGC 4261

pc scale disk seen by freefree absorption

High resolution at lower frequencies is required

巨大ブラックホールの光と影 光

■ 降着円盤の物理 標準円盤、ADAFモデル

降着円盤モデルとの比較

左: M87のADAFモデルとの比較。黒丸はVLBI観測で ジェットの寄与を少なくしたもの。右: Sgr A*のRIAFモデルとの比較。(RIAF: Radiatively Inefficient Accr. Flow) 31

VSOP-2

近傍20 Mpc内にある低 光度AGNについて、 SMBH質量と電波光度を 示した。 薄いハッチはVSOP-2と VLBA (25m)との検出限 界、濃いハッチはVSOP-2とGBT (100m)との22 GHzの検出限界。

少なくとも10天体が検出 でき、その内の半分が ≤ 100 r_gで分解可能。

巨大ブラックホールの光と影

黒い「影」の視認

傾斜角a-c: 20°、g-l: 45°のモ デルで、スピンパラメーターが異な る。

d-f、j-l はそれぞれのモデルを VSOP-2で観測した時のシミュ レーション。M87を想定。

SMBHの回転検出は困難だが影の検出は可能。

高橋、嶺重より

ジェットの加速

磁気遠心力による加速、 およびコリメーション

QuickTimeý DzYUV420 ÉRÅ[ÉfÉDÉN ê Lí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇÕïKóvÇ-ÇÅB

Radiation pressure?

Protostellar Accretion disk and magnetosphere

Protostar magnetosphere

Non-thermal emission from the magnetosphere of YSOs

- Correlation with X-ray flare
- Gyro synchrotron emission

VSOP-2, VSOP, VLBA の比較

	VSOP-2	VSOP	VLBA
Antenna diameter	9 m	8 m	25 m
Apogee height	25,000 km	21,400 km	
Orbit period	7.5 hour	6.3 hour	1day
Polarization	LCP/RCP	LCP	LCP/RCP
Data downlink	1 Gbps	128 Mbps	512 Mbps*
Observing Freq. (GHz)	8, 22, 43	1.6, 5, (22)	5, 8, 22, 43, 86
Highest resolution	38 μ as	360 μ as	96 μ as
Sensitivity (5/8 GHz)	22 mJy	158 mJy	7.9 mJy
(22 GHz)	39 mJy	NA	23 mJy
(22 GHz with phase-ref.)	9.1 mJy		5.3 mJy
(1.5hour integration)			
Launch	FY2010 (target)	Feb.1997	

Assuming that the space VLBI baseline is created between the satellite and VLBA 25m.

VSOP-2 satellite antenna

- A 9-m offset Cassegrain antenna with modulus structures
 - □ Light weight and high accuracy with hoop and lib
 - □ Main & sub reflectors adjustable

年次計画

プロジェクト提案 2004 概算要求 2005 2006-2007 PM 2008-2010 FM フライトオペレーション 2010-2011 打ち上げ 2011 2 月 運用終了(5年以上の運用期間) 2015

VLBI stations in EA

Scientific Targets

- Physics of accretion disk of AGNs
 - □ Standard model, ADEF, others?
- Black Hole shadow
 - □ visualized image?
- Acceleration of jets
 - □ magnetic field working?
- Activities of protostellar disk accretion disk and magnetosphere?
 - agnotoophoro.

SKA

- 1km²の集光面積。
- 0.1-25GHz。
- 15か国の国際協力。
- 2006年サイト決定、2008年 デザイン決定、2015年部分 運用開始、2020年本格運用 開始予定。
- 総建設費~1000億円。

Square Kilometer Array (www.skatelescope.org)

S.G. Djorgovski et al. & Digital Media Center, Caltech

44

Current scientific drivers

•Dark Ages and Epoch of Re-ionization

- ionization of neutral IGM
- properties of first luminous objects
- •Large Scale Structure in the Universe
 - dark energy as function of redshift
- Evolution of galaxies
 - genesis of black holes
 - star formation rate
- •Probing Gravity through pulsars
 - black hole binary as probe of strong gravity
 - low-frequency gravity wave background
- •Origin and evolution of Cosmic Magnetic Fields
 - large scales, primordial fields
 - small scales, turbulence & dynamos
- •Transient universe

•Protoplanetary disks

SKA Development Plan

- 2000-7 technology prototyping
- 2004-5 site testing
- 2006 selection of site, major external review of design
- 2007 prepare funding proposal for 5% demonstrator
- 2008 selection of technical design (may be a combination)
- start construction of 5% demonstrator on selected site
- 2010 submit funding proposal for full array
- 2012 start full construction
- 2020 complete construction

Management structure

ALMA

Current SKA specifications

Sensitivity Surface brightness sensitivity Frequency range Redshift coverage Imaging field of view Multi-beam capability within FoV Angular resolution Number of spatial pixels Instantaneous bandwidth Number of spectral channels Image dynamic range Polarisation purity

 $A_{eff}/T_{svs} = 2 \times 10^4 \text{ m}^2/\text{K}$ 1 K at 0.1 arcsec (continuum) 0.15 – 22 GHz z < 8.5 (HI); z > 4.2 (CO (1 \rightarrow 0)) 1 deg² at 1.4 GHz $N_{\text{beams}} > 100$ < 0.015 arcsec at 1.4 GHz (> 3000 km) > 10⁸ 0.5 + frequency/5 GHz > 10⁴ 10^{6} -40 dB

Site

- Initial site analyses submitted by Australia, China, South Africa, and USA in May 2003, and by Argentina and Brazil in March 2004
- Formal Request for Proposals to be issued in July 2004, due 31 May 2005. Decision 2006
- RFI testing at candidate sites in 2004-5, calibrated by ASTRON team under contract to the ISPO

configuration

20% of total collecting area within 1 km diameter, 50% of total collecting area within 5 km diameter, 75% of total collecting area within 150 km diameter, maximum baselines at least 3000 km from array core

The Square Kilometre Array

Sec. 10.15

Initial Australian Site Analysis

Submitted by The Australian SKA Consortium Committee

Prepared by The Australia Telescope National Facility and Connell Wagner

31 May 2003

Australia

Table 2-1 Candidate Sites and Their Characteristics

Site	Map Index	Nominal Position	RFI Rating	Existing Infrastructure
Mileura (WA)	1	26° 30' S; 117° 04' E	Excellent	Fair
Murnpeowie (SA)	2	29° 18' S; 139° 03' E	Excellent	Fair
Reola (NSW)	3	29° 52' S; 143° 05' E	Excellent	Fair
Parkes (NSW)	4	33° 00' S; 148° 16' E	Very good	Very good

Australlia #1

中国贵州省普定县尚家冲喀斯特洼地

Brief Introduction on Shangjiachong Karst Depression in Puding County, Guizhou Province, China

中国 FAST 工程选址组 FAST 工程地方协调组 贵州省普定县人民政府 一九九九年十月

> Site Selection Group of China for FAST Engineering Program Local Coordination Group for FAST Engineering Program People's Government of Puding County, Guizhou Province

> > October, 1999

NxArecibo

Karst region for array of large Arecibo-like Telescopes

D > 200 m

- •150-200m diameter stations
- •large F/D
- •focal platform supported by aerostat

LAR Prototyping

Instrument Package

- •Focal Plane Array package covering 0.7-1.4 GHz
- RF Feed design
- Beam forming
- Reflector actuators

The ATA in 2005

Mass-produced parabolas: the Allen Telescope Array

- SETI Institute
- UC Berkeley
- 100 m equivalent
- 350 x 6.1 m parabolas
- 0.5-11 GHz (simultaneously)
- 2.5° FoV at 1.4 GHz
- 4 simultaneous beams
- 206 antennas in 2005

Large N: Inexpensive Antennas

Large-N/Small-D

12 m Hydroformed Dishes Offset Gregorian Symmetric Cassegrain

Wideband Cryogenic Feeds & Receivers

Thousand Element Aperture Array: ASTRON, NL

funding

- prototype development phase to 2007: ~ 30 M€(Australia, Canada, China, India, NL, US)
- + 65 M€(LOFAR) + 20 M€(Allen Telescope Array, USA) + 5 M€ (NASA Deep Space Network)
- (+ FP6 Design Study (Europe) and TDP (US) if successful)
- 2. <u>global demonstrator/SKA phase 1 (2008-2011):</u> 50-100 M€
- 3. <u>full construction (2012 2020):</u> ~1 B€ (~1000 €m²)
 - 40% Europe
 - 40% USA
 - 20% Australia, Canada, China, India, Japan, South Africa,

我々はどうする? SKAサイエンスミーティング:04/11/12 ・何が面白そうか ・どう関わるか 議論が必要

http://alma.mtk.nao.ac.jp/~iguchi/SKA/ SKAScienceMeeting20041112.htm